- Русский язык
- Литература
- Экономика. Право
- Иностранные языки
- Окружающий мир. Природоведение
- Музыка
- Изобразительное искусство
- История
- Технология
- Мировая художественная культура (МХК)
- Учебно-воспитательная работа в школе
- Административное управление образованием
- Биология. Экология
- Информатика
- Религиоведение
- Естествознание
- Химия
- Физика. Астрономия
- Риторика
- Сборники готовых домашних заданий
- Психолог в школе
- География
- Портфолио
- ОБЖ
- Справочники для школьников
High-Dimensional Covariance Estimation. With High-Dimensional Data; John Wiley & Sons Limited
9393 р.
- Издатель: John Wiley & Sons Limited
- ISBN: 9781118573655
- Книги: Математика
- ID:6000516
Где купить (1)
Цена от 9393 р. до 9393 р. в 1 магазинах
Магазин | Цена | Наличие |
---|---|---|
Предложения банков
Компания | Предложение |
---|
Описание
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Смотри также о книге.
О книге
Параметр | Значение |
---|---|
Автор(ы) | Mohsen Pourahmadi |
Издатель | John Wiley & Sons Limited |
ISBN | 9781118573655 |
Форматы электронной версии |
Отзывы (0)
Добавить отзыв
Книги: Математика - издательство "John Wiley & Sons Limited"
Категория 7514 р. - 11271 р.
Книги: Математика
Категория 7514 р. - 11271 р.