Mathematics of Shape Description; John Wiley & Sons Limited

16384 р.

  • Издатель: John Wiley & Sons Limited
  • ISBN: 9780470823088
  • Книги: Техническая литература
  • ID:6508371
Где купить

Где купить (1)

Цена от 16384 р. до 16384 р. в 1 магазинах

МагазинЦенаНаличие
16384 р.
Электронная книга Кэшбэк до 6.5%

03.08.2025
Яндекс.Маркет
5/5
Промокоды на скидку

Предложения банков


Компания Предложение

Описание

Image processing problems are often not well defined because real images are contaminated with noise and other uncertain factors. In Mathematics of Shape Description, the authors take a mathematical approach to address these problems using the morphological and set-theoretic approach to image processing and computer graphics by presenting a simple shape model using two basic shape operators called Minkowski addition and decomposition. This book is ideal for professional researchers and engineers in Information Processing, Image Measurement, Shape Description, Shape Representation and Computer Graphics. Post-graduate and advanced undergraduate students in pure and applied mathematics, computer sciences, robotics and engineering will also benefit from this book. Key Features Explains the fundamental and advanced relationships between algebraic system and shape description through the set-theoretic approach Promotes interaction of image processing geochronology and mathematics in the field of algebraic geometry Provides a shape description scheme that is a notational system for the shape of objects Offers a thorough and detailed discussion on the mathematical characteristics and significance of the Minkowski operators

Смотри также о книге.

О книге


ПараметрЗначение
Автор(ы)
ИздательJohn Wiley & Sons Limited
ISBN9780470823088
Форматы электронной версииPDF


Отзывы (0)


Зарегистрируйтесь и получайте бонусы за покупки!


Книги: Технические науки - издательство "John Wiley & Sons Limited"

Категория 13107 р. - 19660 р.

Книги: Технические науки

Категория 13107 р. - 19660 р.

закладки (0) сравнение (0)

38 ms