Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и Ten; Компьютерные науки, 2019

Где купить

Где купить

Последняя известная цена от 2638 р. до 4322 р. в 2 магазинах

В данный момент у нас нет информации о наличии данного товара в магазинах.
Вы можете поискать его на других площадках:

МагазинЦенаНаличие
Яндекс.Маркет
5/5
Промокоды на скидку
Avito доставка позволит получить любой товар, не выходя из дома

История цены

МагазинПоследняя известная ценаОбновлено
Лабиринт
4322 р.
23.06.2021
Буквоед
2638 р.

Описание

Машинное обучение поглощает мир программного обеспечения. Освойте и работайте с передовыми технологиями машинного обучения, нейронных сетей и глубокого обучения с помощью 2-го издания бестселлера Себастьяна Рашки.

Будучи основательно обновленной с учетом самых последних технологий с открытым кодом, включая такие библиотеки, как scikit-learn, Keras и TensorFlow, эта книга предлагает практические знания и приемы, которые необходимы для создания эффективных приложений машинного и глубокого обучения на языке Python. Обладающие уникальной проницательностью и знанием дела авторы книги, Себастьян Рашка и Вахид Мирджалили, ознакомят вас с алгоритмами машинного обучения и глубокого обучения и постепенно подведут к сложным темам в анализе данных. В книге предлагается сочетание теоретических принципов машинного обучения с практическим подходом к написанию кода для полного понимания теории машинного обучения и реализация с помощью Python.

Основные темы книги

Освойте основные фреймворки в науке о данных, машинном обучении и глубоком обучении

Задайте новые вопросы своим данным через модели машинного обучения и нейронные сети

Используйте всю мощь самых последних библиотек Python с открытым кодом для машинного обучения

Научитесь строить реализации глубоких нейронных сетей с применением библиотеки TensorFlow

Встраивайте модели машинного обучения в доступные веб-приложения

Прогнозируйте непрерывные целевые результаты с применением регрессионного анализа

Раскройте скрытые шаблоны и структуры в данных с помощью кластеризации

Анализируйте изображения с использованием приемов глубокого обучения

Углубитесь в текстовые данные и данные из социальных сетей с применением смыслового анализа

Если вы читали 1-е издание книги, то вам доставит удовольствие найти новый баланс классических идей и современных знаний в машинном обучении.

Каждая глава была серьезно обновлена, и появились новые главы по ключевым технологиям. У вас будет возможность изучить и поработать с TensorFlow более вдумчиво, нежели ранее, а также получить важнейший охват библиотеки для нейронных сетей Keras наряду с самыми свежими обновлениями библиотеки scikit-learn.

Об авторах

Себастьян Рашка, автор ставшего бестселлером 1-го издания этой книги, обладает многолетним опытом написания кода на языке Python. Он проводил многочисленные семинары по практическому применению науки о данных, машинному обучению и глубокому обучению, включая руководство по машинному обучению на SciPy - ведущей конференции, посвященной научным расчетам с помощью Python.

Несмотря на то что исследовательские проекты Себастьяна сосредоточены главным образом на решении задач в области вычислительной биологии, ему нравится писать и говорить на темы науки о данных, машинного обучения и языка Python в общем, и он стремится помочь людям разрабатывать решения, управляемые данными, без обязательного знания подоплеки машинного обучения.

Недавно его работа и вклад были отмечены званием выдающегося аспиранта 2016-2017, а также наградой ACM Computing Reviews' Best of 2016.

В свободное время Себастьян любит участвовать в проектах с открытым кодом, а методы, которые он реализовал, теперь успешно используются в состязаниях по машинному обучению, таких как Kaggle.

Вахид Мирджалили получил звание PhD в машиностроении, работая над новаторскими методами для крупномасштабных вычислительных эмуляций молекулярных структур. В настоящее время он сосредоточил свою научно-исследовательскую работу на приложениях машинного обучения в разнообразных проектах компьютерного зрения в отделении компьютерных наук и инженерии Университета штата Мичиган.

Вахид избрал Python в качестве главного языка программирования, и на протяжении своей научно-исследовательской карьеры накопил громадный опыт в написании кода Python. Он преподавал программирование на Python инженерной группе в Университете штата Мичиган, что дало ему возможность помочь студентам понять разные структуры данных и разрабатывать эффективный код на Python.

Наряду с тем, что обширные исследовательские интересы Вахида сконцентрированы на приложениях глубокого обучения и компьютерного зрения, он особенно интересуется использованием приемов глубокого обучения для усиления приватности в биометрических данных, таких как изображения лиц, чтобы не раскрывалась информация сверх той, что пользователи намеревались показывать. Кроме того, он также сотрудничает с командой инженеров, работающих над беспилотными автомобилями, где проектирует модели на основе нейронных сетей для слияния многоспектральных изображений с целью обнаружения пешеходов.

Смотри также о книге.

О книге


ПараметрЗначение
Автор(ы)
ИздательКомпьютерные науки
Год издания2019
ISBN978-5-90-711452-4
Размеры16,90 см × 24,10 см × 3,90 см
ТематикаТекстовые редакторы


Отзывы (3)


  • 5/5

    Книга просто замечательная. Я о нейросетях в последний раз слышала 10 лет назад в университете. Теперь же, когда на работе потребовалось написать программное обеспечение с нейросетью, эта книга стала настоящим учебником. Авторы всё очень доходчиво объясняют.
    Один только недостаток - уже устаревшая версия TensorFlow использована в коде, представленном в книге. С новой версией этой библиотеки ничего не работает (PyCharm, Python + Anaconda). Я долго билась над разгадкой почему ничего не работает, а потом Себастьян Рашка (да, я списалась с автором) написал мне, что уже есть 3е издание!
    А так с точки зрения теории - книга просто восхитительная.

  • 4/5

    Это очень хорошая книга. Себастьян Рашка известный практик и, на мой взгляд, отличный педагог. Его объяснения легко читать, и при этом они ясные и лаконичные.
    Примеры кода на питоне позволяются сразу погрузиться в практику программирования систем ИИ. Всем рекомендую!

Зарегистрируйтесь и получайте бонусы за покупки!


Похожие товары

Книги: Анализ данных

Категория 2110 р. - 3165 р.

закладки (0) сравнение (0)

10 ms